A Lex-BFS-based recognition algorithm for Robinsonian matrices
نویسندگان
چکیده
منابع مشابه
A Lex-BFS-Based Recognition Algorithm for Robinsonian Matrices
Robinsonian matrices arise in the classical seriation problem and play an important role in many applications where unsorted similarity (or dissimilarity) information must be reordered. We present a new polynomial time algorithm to recognize Robinsonian matrices based on a new characterization of Robinsonian matrices in terms of straight enumerations of unit interval graphs. The algorithm is si...
متن کاملSimilarity-First Search: a new algorithm with application to Robinsonian matrix recognition
We present a new efficient combinatorial algorithm for recognizing if a given symmetric matrix is Robinsonian, i.e., if its rows and columns can be simultaneously reordered so that entries are monotone nondecreasing in rows and columns when moving toward the diagonal. As main ingredient we introduce a new algorithm, named Similarity-First-Search (SFS), which extends Lexicographic BreadthFirst S...
متن کاملA Structural Characterization for Certifying Robinsonian Matrices
A symmetric matrix is Robinsonian if its rows and columns can be simultaneously reordered in such a way that entries are monotone nondecreasing in rows and columns when moving toward the diagonal. The adjacency matrix of a graph is Robinsonian precisely when the graph is a unit interval graph, so that Robinsonian matrices form a matrix analogue of the class of unit interval graphs. Here we prov...
متن کاملA polynomial recognition algorithm for balanced matrices
A 0,±1 matrix is balanced if it does not contain a square submatrix with two nonzero elements per row and column in which the sum of all entries is 2 modulo 4. Conforti, Cornuéjols and Rao [9], and Conforti, Cornuéjols, Kapoor and Vušković [6], provided a polynomial algorithm to test balancedness of a matrix. In this paper we present a simpler polynomial algorithm, based on techniques introduce...
متن کاملThe Quadratic Assignment Problem is easy for Robinsonian Matrices
We present a new polynomially solvable case of the Quadratic Assignment Problem in Koopmans-Beckman form QAP(A,B), by showing that the identity permutation is optimal when A and B are respectively a Robinson similarity and dissimilarity matrix and one of A or B is a Toeplitz matrix. A Robinson (dis)similarity matrix is a symmetric matrix whose entries (increase) decrease monotonically along row...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 2017
ISSN: 0166-218X
DOI: 10.1016/j.dam.2017.01.027